
P1: JPJ/FFX P2: FCH/FFX QC: FCH/FFX T1: FCH

CB762-FM CB762-Casselman-v1.cls September 22, 2004 10:49

Mathematical
Illustrations
A MANUAL OF GEOMETRY
AND POSTSCRIPT

BILL CASSELMAN
University of British Columbia

iii



P1: JPJ/FFX P2: FCH/FFX QC: FCH/FFX T1: FCH

CB762-FM CB762-Casselman-v1.cls September 22, 2004 10:49

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE
The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS
The Edinburgh Building, Cambridge CB2 2RU, UK
40 West 20th Street, New York, NY 10011-4211, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
Ruiz de Alarcón 13, 28014 Madrid, Spain
Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

C© Bill Casselman 2005

This book is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 2005

Printed in Hong Kong, China

Typefaces Photina MT 10/13.5 pt. with ITC Symbol and Lucida Sans Typewriter
System LATEX 2ε [TB]

A catalog record for this book is available from the British Library.

Library of Congress Cataloging in Publication Data

Casselman, Bill, 1941–

Mathematical illustrations : a manual of geometry and PostScript / Bill Casselman.

p. cm.

Includes bibliographical references and index.

ISBN 0-521-83921-1 (hardback) – ISBN 0-521-54788-1 (pbk.)

1. PostScript (Computer program language) I. Title.

QA76.73.P67C37 2004
005.13′3 – dc22 2004045886

ISBN 0 521 83921 1 hardback
ISBN 0 521 54788 1 paperback

PostScript R©, Illustrator R©, and PhotoShop R© are registered trademarks of Adobe Systems,
Inc. Mathematica R© is a registered trademark of Wolfram Research. MapleTM is a
trademark of Waterloo Maple Inc. MATLAB R© is a registered trademark of the Mat
Works, Inc. Windows R© is a registered trademark of Microsoft Corporation. Macintosh R©

is a registered trademark of Apple Computers, Inc. UNIX R© is a registered trademark of
The Open Group in the United States and other countries. Other proprietary names used in
the book are registered trademarks, and where possible, this is indicated within the text.

In this book, the phrase, “PostScript interpreter” mean an interpreter of the PostScript language.

The specific list of commands that make up the PostScript language is copyrighted by
Adobe Systems, Inc.

iv



P1: JPJ/FFX P2: FCH/FFX QC: FCH/FFX T1: FCH

CB762-FM CB762-Casselman-v1.cls September 22, 2004 10:49

Contents

Preface page xi

1 Getting started in PostScript 1
1.1. Simple drawing 1
1.2. Simple coordinate changes 7
1.3. Coordinate frames 9
1.4. Doing arithmetic in PostScript 11
1.5. Errors 14
1.6. Working with files and viewers GhostView or GSView 16
1.7. Some fine points 19
1.8. A trick for eliminating redundancy 22
1.9. Summary 23

1.10. Code 24

2 Elementary coordinate geometry 26
2.1. Points and vectors 26
2.2. Areas of parallelograms 27
2.3. Lengths 31
2.4. Vector projections 34
2.5. Rotations 37
2.6. The cosine rule 38
2.7. Dot products in higher dimensions 40
2.8. Lines 40
2.9. Code 43

3 Variables and procedures 44
3.1. Variables in PostScript 44
3.2. Procedures in PostScript 46
3.3. Keeping track of where you are 48
3.4. Passing arguments to procedures 50
3.5. Procedures as functions 52

v



P1: JPJ/FFX P2: FCH/FFX QC: FCH/FFX T1: FCH

CB762-FM CB762-Casselman-v1.cls September 22, 2004 10:49

vi CONTENTS

3.6. Local variables 53
3.7. A final improvement 55

4 Coordinates and conditionals 57
4.1. Coordinates 57
4.2. How PostScript stores coordinate transformations 60
4.3. Picturing the coordinate system 63
4.4. Moving into three dimensions 65
4.5. How coordinate changes are made 69
4.6. Drawing infinite lines: Conditionals in PostScript 71
4.7. Another way to draw lines 76
4.8. Clipping 79
4.9. Order counts 79

4.10. Code 80

5 Drawing polygons: Loops and arrays 81
5.1. The repeat loop 81
5.2. The for loop 83
5.3. The loop loop 84
5.4. Graphing functions 84
5.5. General polygons 85
5.6. Clipping polygons 87
5.7. Code 91

6 Curves 92
6.1. Arcs 92
6.2. Fancier curves 93
6.3. Bézier curves 94
6.4. How to use Bézier curves 96
6.5. The mathematics of Bézier curves 103
6.6. Quadratic Bézier curves 105
6.7. Mathematical motivation 105
6.8. Weighted averages 108
6.9. How the computer draws Bézier curves 110

6.10. Bernstein polynomials 112
6.11. This section brings you the letter O 113

Interlude 117

7 Drawing curves automatically: Procedures as arguments 120
7.1. Drawing a hyperbola 120
7.2. Parametrized curves 125
7.3. Drawing graphs automatically 125
7.4. Drawing parametrized paths automatically 128



P1: JPJ/FFX P2: FCH/FFX QC: FCH/FFX T1: FCH

CB762-FM CB762-Casselman-v1.cls September 22, 2004 10:49

CONTENTS vii

7.5. How to use it 130
7.6. How it works 132
7.7. Code 132

8 Nonlinear 2D transformations: Deconstructing paths 133
8.1. Two-dimensional transformations 133
8.2. Conformal transforms 137
8.3. Transforming paths 138
8.4. Maps 139
8.5. Stereographic projection 142
8.6. Fonts want to be free 144
8.7. Code 144

9 Recursion in PostScript 147
9.1. The perils of recursion 147
9.2. Sorting 149
9.3. Convex hulls 154
9.4. Code 159

10 Perspective and homogeneous coordinates 160
10.1. The projective plane 162
10.2. Boy’s surface 164
10.3. Projective transformations 166
10.4. The fundamental theorem 167
10.5. Projective lines 169
10.6. A remark about solving linear systems 170
10.7. The GIMP perspective tool revisited 174
10.8. Projections in 2D 175
10.9. Perspective in 3D 175

11 Introduction to drawing in three dimensions 179

12 Transformations in 3D 181
12.1. Rigid transformations 181
12.2. Dot and cross products 183
12.3. Linear transformations and matrices 189
12.4. Changing coordinate systems 192
12.5. Rigid linear transformations 194
12.6. Orthogonal transformations in 2D 196
12.7. Orthogonal transformations in 3D 197
12.8. Calculating the effect of an axial rotation 200
12.9. Finding the axis and angle 201

12.10. Euler’s theorem 202
12.11. More about projections 203



P1: JPJ/FFX P2: FCH/FFX QC: FCH/FFX T1: FCH

CB762-FM CB762-Casselman-v1.cls September 22, 2004 10:49

viii CONTENTS

13 PostScript in 3D 205
13.1. A survey of the package 206
13.2. The 3D graphics environment 210
13.3. Coordinate transformations 212
13.4. Drawing 214
13.5. Surfaces 215
13.6. Code 216

14 Drawing surfaces in 3D 217
14.1. Faces 217
14.2. Polyhedra 219
14.3. Visibility for convex polyhedra 221
14.4. Shading 223
14.5. Smooth surfaces 227
14.6. Smoother surfaces 231
14.7. Abandoning convexity 236
14.8. Summary 240
14.9. Code 241

15 Triangulation: Basic graphics algorithms 243
15.1. The monotone decomposition 243
15.2. The algorithm 248
15.3. The intersection list 250
15.4. Triangulation 252
15.5. Small triangles 254
15.6. Code 256

Appendix 1. Summary of PostScript commands 259
A1.1. Mathematical functions 259
A1.2. Stack operations 260
A1.3. Arrays 260
A1.4. Dictionaries 261
A1.5. Conditionals 262
A1.6. Loops 262
A1.7. Conversions 263
A1.8. File handling and miscellaneous 263
A1.9. Display 264

A1.10. Graphics state 265
A1.11. Coordinates 266
A1.12. Drawing 266
A1.13. Displaying text 267
A1.14. Errors 268
A1.15. Alphabetical list 269



P1: JPJ/FFX P2: FCH/FFX QC: FCH/FFX T1: FCH

CB762-FM CB762-Casselman-v1.cls September 22, 2004 10:49

CONTENTS ix

Appendix 2. Setting up your PostScript environment 271
A2.1. Editing PostScript files 271
A2.2. Running external files 272
A2.3. Making images 272
A2.4. Printing files 273

Appendix 3. Structured PostScript documents 276

Appendix 4. Simple text display 279
A4.1. Simple PostScript text 279
A4.2. Outline fonts 281

Appendix 5. Zooming 283
A5.1. Zooming 283
A5.2. An explicit procedure 285
A5.3. Playing around 285
A5.4. Code 286

Appendix 6. Evaluating polynomials: Getting along without
variables 287

A6.1. The most straightforward way to do it 287
A6.2. Horner’s method 288
A6.3. Evaluating the derivatives efficiently 290
A6.4. Evaluating Bernstein polynomials 291
A6.5. Code 293

Appendix 7. Importing PostScript files 294
A7.1. Labeling a graph 294
A7.2. Importing TEX text 298
A7.3. Fancy work 301

Epilogue 305
Index 313



P1: JzL-FcW/gos P2: JzL

CB762-01 CB762-Casselman-v1.cls September 2, 2004 10:42

CHAPTER 1

Getting started in PostScript

In this book we use a program called Ghostscript, as well as one of several pro-
grams that in turn rely on Ghostscript running behind the scenes, to serve as
our PostScript R© interpreter and interface. All the programs we use are available
without cost through the Internet. Be careful – the language we are writing our
programs in is PostScript, and the program used to interpret them is Ghostscript.
See Appendix 2 for how to acquire Ghostscript and set up your programming
environment.

The interpreter Ghostscript has by itself a relatively primitive user interface that
will turn out to be too awkward to use for very long, but learning this interface will
give you a valuable feel for the way PostScript works. Furthermore, Ghostscript
will continue to serve a useful although limited purpose in debugging as well as
animations.

We begin in this chapter by showing how Ghostscript works and then later on
explain a more convenient way to produce pictures with PostScript.

1.1 SIMPLE DRAWING

Start up Ghostscript. On Unix R© networks this is usually done by typing gs in a
terminal window, and on other systems it is usually done by clicking on the icon
for Ghostscript. (You can also run Ghostscript in a terminal window – even on
Windows R© systems; see Appendix 2.) What you get while gs is running are two
windows – one a kind of terminal window into which you type commands and
from which you read plain text output and the other a graphics window in which
things are drawn.

The graphics window, which I will often call the page, opens up with a default
coordinate system. The origin of this coordinate system on a page is at the lower
left, and the unit of measurement, which is the same in both horizontal and vertical

1



P1: JzL-FcW/gos P2: JzL

CB762-01 CB762-Casselman-v1.cls September 2, 2004 10:42

2 GETTING STARTED IN PostScript

The program Ghostscript running with image and terminal windows showing.

directions, is equal to a point exactly 1/72 of an inch in length. (This Adobe point
is almost, but not quite, the same as the classical printer’s point, which measures
72.27 to an inch.) The size of the graphics window will probably be either letter size
(8.5′′ × 11′′ or 612 × 792 points2) or the size of European A4 paper, depending
on your locality. As we will see in a moment, the coordinate system can easily be
changed so as to arrange x and y units to be anything you want with the origin
anywhere in the plane of the page.

When I start up running my local version of Ghostscript in a terminal window
I get a display in that window looking like this:

AFPL Ghostscript 7.04 (2002-01-31)

Copyright (C) 2001 artofcode LLC, Benicia, CA. All rights reserved.

This software comes with NO WARRANTY: see the file PUBLIC for details.

GS>

In short, I am facing the Ghostscript prompt GS>, and I am expected to type in
commands. Let’s start off by drawing a line in the middle of the page. On the left is
what the terminal window displays, and on the right is what the graphics window



P1: JzL-FcW/gos P2: JzL

CB762-01 CB762-Casselman-v1.cls September 2, 2004 10:42

1.1 SIMPLE DRAWING 3

looks like:

GS>newpath

GS>144 144 moveto

GS>288 288 lineto

GS>stroke

GS>

(The grid is just there to help you orient yourself and is not displayed in the real
window.) The machine produces the prompts here, and everything else is typed by
you. The graphics window displays the diagonal line in the figure on the right.

If we look really closely at the line on the screen that comes up,
say with a magnifying glass, we’ll see a rather jagged image. That’s
because the screen is made up of pixels with about 75 pixels in an
inch.ButPostScript isascalablegraphics language,whichmeans
that if you look at output on a device with a higher resolution than
your screen, the effects of pixelization will be seen only at that
resolution. Exactly how the computer transforms the directions for drawing a line
into a bunch of black pixels is an extremely interesting question but is not one that
this book will consider. So, in effect, in this book all lines will be assumed to be . . .
well, lines – not things that look jagged and ugly – dare I say pixellated? – close up.

You draw things in PostScript by constructing paths. Any path in PostScript is
a sequence of lines and curves. At the beginning, we will work only with lines. In
all cases, first you build a path and then you actually draw it.

� You begin building a path with the command newpath. This is like picking up
a pen to begin drawing on a piece of paper. In case you have already drawn a
path, the command newpath also clears away the old path.

� You start the path itself with the command moveto. This is like placing your
pen at the beginning of your path. In PostScript, things are generally what you
might think to be backwards, and so you write down first the coordinates of the
point to move to and then the command.



P1: JzL-FcW/gos P2: JzL

CB762-01 CB762-Casselman-v1.cls September 2, 2004 10:42

4 GETTING STARTED IN PostScript

� You add a line to your path with the command lineto. This is like moving your
pen on the paper. Again you place the coordinates first and then the command.

� So far you have just built your path. You draw it – that is, make it visible – with
the command stroke. You have some choice over what color you can draw
with, but the color that is used by default is black.

From now on I will usually leave the prompts GS> out. Let me repeat what I hope to be
clear from this example:

� PostScript always digests things backwards. The arguments to an operator always go
before the operator itself.

This convention is called Reverse Polish Notation (RPN). It will seem some-
what bizarre at first, but you’ll get used to it. It is arguable that manual calcula-
tions, at least when carried out by those trained in European languages, should
have followed RPN conventions instead of the ones used commonly in mathemat-
ics. It makes a great deal of sense to apply operations as you write from left to
right.

RPN was devised by logicians for purely theoretical reasons, but PostScript is
like this for practical reasons of efficiency. There is one great advantage from a
user’s standpoint: it allows a simple “cut and paste” style of programming.

You would draw a square 2 inches on a side with the command sequence

newpath

144 144 moveto

288 144 lineto

288 288 lineto

144 288 lineto

144 144 lineto

stroke

If you type this immediately after the previous command sequence, you will just



P1: JzL-FcW/gos P2: JzL

CB762-01 CB762-Casselman-v1.cls September 2, 2004 10:42

1.1 SIMPLE DRAWING 5

put the square down on top of the line you have already drawn:

I’ll tell you in Section 1.6 how to start over with a clean page. For now, it is
important to remember that PostScript paints over what you have already drawn just
like painting on a canvas. There is no command that erases what has already been
drawn.

There are often many different ways to do the same thing in PostScript. Here is
a different way to draw the square:

newpath

144 144 moveto

144 0 rlineto

0 144 rlineto

-144 0 rlineto

closepath

stroke

The commands rmoveto and rlineto mean motion relative to where you were
before. The command closepath closes up your path back to the last point to
which you applied a moveto.

A very different effect is obtained with

newpath

144 144 moveto

144 0 rlineto

0 144 rlineto

-144 0 rlineto

closepath

fill



P1: JzL-FcW/gos P2: JzL

CB762-01 CB762-Casselman-v1.cls September 2, 2004 10:42

6 GETTING STARTED IN PostScript

This just makes a big black square in the same location. Whenever you build a path,
the operations you perform to make it visible are stroke and fill. The first draws the
path; the second fills the region inside it.

You can draw in different shades and colors with two different commands,
setgray and setrgbcolor. Thus,

0.5 setgray

newpath

144 144 moveto

144 0 rlineto

0 144 rlineto

-144 0 rlineto

closepath

fill

will make a gray square, and

1 0 0 setrgbcolor

newpath

144 144 moveto

144 0 rlineto

0 144 rlineto

-144 0 rlineto

closepath

fill

will make a red one. The rgb here stands for red, green, blue, and for each color
you choose a set of three parameters between 0 and 1. Whenever you set a new
color, it will generally persist until you change it again. Note that 0 is black and is
1 white. The command x setgray is the same as x x x setrgbcolor. You can
remember that 1 is white by recalling from high school physics that white is made
up of all the colors put together.

EXERCISE 1.1. How would you set the current color to green? Pink? Violet? Orange?

Filling or stroking a path normally deletes it from the record. So if you want to
fill and stroke the same path, you have to be careful. One way of dealing with this
is straightforward if tedious – just copy code. If you want to draw a red square with
a black outline, you then type



P1: JzL-FcW/gos P2: JzL

CB762-01 CB762-Casselman-v1.cls September 2, 2004 10:42

1.2 SIMPLE COORDINATE CHANGES 7

1 0 0 setrgbcolor

newpath

144 144 moveto

144 0 rlineto

0 144 rlineto

-144 0 rlineto

closepath

fill

0 setgray

newpath

144 144 moveto

144 0 rlineto

0 144 rlineto

-144 0 rlineto

closepath

stroke

In Section 1.8 we will see a way to produce this figure without redundant typing.

EXERCISE 1.2. Run Ghostscript. Draw an equilateral triangle near the center of the page instead
of a square. Make it 100 points on a side with one side horizontal. First draw it in outline; then fill
it in black. Next, make it in turn red, green, and blue with a black outline. (You will have to do a few
calculations first. In fact, as we will see in Section 1.4, you can get PostScript to do the calculations.)

1.2 SIMPLE COORDINATE CHANGES

Working with points as a unit of measure is not for most purposes very convenient.
For North Americans, since the default page size is 8.5′′ × 11′′, working with inches
usually proves easier. We can change the basic unit of length to an inch by typing

72 72 scale

which scales up the x and y units by a factor of 72. Scaling affects the current
units, and so scaling by 72 is the same as scaling first by 8 and then by 9. This is
the way it always works. The general principle here is this:

� Coordinate changes are always interpreted relative to the current coordinate system.



P1: JzL-FcW/gos P2: JzL

CB762-01 CB762-Casselman-v1.cls September 2, 2004 10:42

8 GETTING STARTED IN PostScript

You can scale the x and y axes by different factors, but it is usually a bad idea.
Lines are themselves drawable objects of finite width. If scaling is not uniform, the
thickness of a line will depend on its direction. Thus, scaling x by 2 and y by 1 has
this effect on a square with a thick border:

To be sure to get both scale factors the same, you can also type 72 dup scale. The
command dup duplicates the previous entry.

When you scale, you must take into account that the default choice of the width
of lines is 1-unit. So if you scale to inches, you will get lines 1-inch wide unless you
do something about it. It might be a good idea to add

0.01389 setlinewidth

when you scale to inches. This sets the width of lines to 1/72 of an inch. A linewidth
of 0 is also allowable – it just produces the thinnest possible lines that do not actually
vanish. You should realize, however, that on a device of high resolution, such as
a 1200 DPI printer, such lines will be nearly invisible. Setting the line width to 0
contradicts the general principle of device independence – you should always aim
in PostScript to produce figures that do not in any way depend directly on the particular
device on which it will be reproduced.

EXERCISE 1.3. How would you scale to centimeters?

You can also shift the origin.

1 2 translate

moves the coordinate origin to the right by 1 unit and up by 2 units. The combi-
nation

72 72 scale

4.25 5.5 translate

moves the origin to the center of an 8.5′′ × 11′′ page.



P1: JzL-FcW/gos P2: JzL

CB762-01 CB762-Casselman-v1.cls September 2, 2004 10:42

1.3 COORDINATE FRAMES 9

There is one more simple coordinate change: rotate.

144 144 translate

30 rotate

newpath

0 0 moveto

144 0 lineto

144 144 lineto

0 144 lineto

0 0 lineto

stroke

The translation is done first because rotation always takes place around the current
origin. Note that PostScript works with angles in degrees. This will cause us some
trouble later on, but for now it is probably A Good Thing.

EXERCISE 1.4. Europeans use A4 paper. Find out its dimensions and show how to draw a square
one centimeter on a side with its center in the middle of an A4 page. (Incidentally, what is the special
mathematical property of A4 paper?)

1.3 COORDINATE FRAMES

It is sometimes not quite so easy to predict the effect of coordinate changes. The
secret to doing so is to think in terms of coordinate frames. Frames are asso-
ciated to linear coordinate systems and vice versa. The way to visualize how the
coordinate changes scale, translate, and rotate affect drawing is by realizing
their effect on the frame of the coordinate system.

A simple frame, with units in centimeters



P1: JzL-FcW/gos P2: JzL

CB762-01 CB762-Casselman-v1.cls September 2, 2004 10:42

10 GETTING STARTED IN PostScript

Scaled by
√

2 in both directions

Translated by [1, 1]

Rotated by 45◦

There are two fundamental things to keep in mind when wondering how coordinate
changes affect drawing.

� Coordinate changes affect the current frame in the natural and direct way. That is to
say, 2 2 scale scales the current frame vectors by a factor of 2, and so on.

� Drawing commands take effect relative to the current frame.

For example, rotate always rotates the coordinate system around the current
origin, which means that it rotates the current coordinate frame. The commands
translate,scale, androtate, when combined in the right fashion, can make any
reasonable coordinate change you want (as well as a few you will probably never
want). The restriction of “reasonability” here means those that in effect lay down



P1: JzL-FcW/gos P2: JzL

CB762-01 CB762-Casselman-v1.cls September 2, 2004 10:42

1.4 DOING ARITHMETIC IN PostScript 11

a grid of parallel lines on the plane. As an example, suppose you want to rotate
your coordinate system around some point other than the origin. More explicitly,
suppose you want to rotate by 45◦ around the point whose coordinates in the
current system are (2, 2). In other words, we want to move the current coordinate
frame as at the right.

The way to get this is

2 2 translate 45 rotate -2 -2 translate

In other words, to rotate the coordinate system by θ around the point P , you
perform in sequence (1) translation by the vector (P − O ) from the origin O to P ;
(2) rotation by θ ; (3) translation by −(P − O ).

The effect of “zooming in” is rather similar and is analyzed in Appendix 5.

1.4 DOING ARITHMETIC IN PostScript

PostScript is a complete programming language. But with the goal of handling
data rapidly, it has only limited built-in arithmetical capabilities. As in many
programming languages, both integers and real numbers are of severely limited
precision. In some implementations of PostScript, integers must lie in the range
[−32784, 32783], and real numbers are only accurate to about seven significant
places. This is where the roots of the language in graphics work show up, for nor-
mally drawing a picture on a page of reasonable size does not have to be extremely



P1: JzL-FcW/gos P2: JzL

CB762-01 CB762-Casselman-v1.cls September 2, 2004 10:42

12 GETTING STARTED IN PostScript

accurate. This limited accuracy is not usually a serious problem, but it does mean
you have to be careful.

At any rate, with arithmetical operations as with drawing operations the se-
quence of commands is backwards from what you might expect. To add two num-
bers, first enter the numbers followed by the command add. The result of adding
numbers is also not quite what you might expect. Here is a sample run in the
Ghostscript interpreter:

GS>3 4 add

GS<1>

What’s going on here? What does the <1> mean? Where is the answer?
PostScript uses a stack to do its operations. This is an array of arbitrary length

that grows and shrinks as a program moves along. The very first item entered is
said to be at the bottom of the stack, and the last item entered is said to be at its top.
This is rather like manipulating dishes at a cafeteria. Generally, operations affect
only the things towards the top of the stack and compute them without displaying
results. For example, the sequence 3 4 add does this:

Entry What happens What the stack looks like

3 The number 3 goes onto the stack 3

4 The number 4 goes above the 3 on the stack 3 4

add The operation add goes above 4 . . . 3 4 add

then collapses the stack to just a single number 7

You might be able to guess now that the <1> in our run tells us the size of the stack.
To display the top of the stack, we type =. If we do this, we get

GS>3 4 add

GS<1>=

7

GS>

Note that = removes the result when it displays it (as does the similar command
==). An alternative is to type stack or pstack, which displays the entire stack and
does not destroy anything on it.

GS>3 4 add

GS<1>stack

7

GS<1>



P1: JzL-FcW/gos P2: JzL

CB762-01 CB762-Casselman-v1.cls September 2, 2004 10:42

1.4 DOING ARITHMETIC IN PostScript 13

The difference between = and == is too technical to explain here, but in practice
you should usually use ==. Similarly, you should usually use pstack, which is a bit
more capable than stack. There is a third and slightly more sophisticated display
operator calledprint. It differs from the others in that it does not automatically put
in a carriage return and can be used to format output. Theprint command applies
basically only to strings, which are put within parentheses. (Refer to Appendix 1
for instructions on how to use print.)

Other arithmetic operations are sub, mul, div. Some of the mathematical func-
tions we can use aresqrt,cos,sin,atan. For example, here is a command sequence
computing and displaying

√
3 ∗ 3 + 4 ∗ 4:

GS>3 3 mul

GS<1>4 4 mul

GS<2>add

GS<1>sqrt

GS<1>=

5.0

GS>

One thing to note here is that the number 5 is written as 5.0, which means that
it is a real number, not an integer. PostScript generally treats integers differently
from real numbers; only integers can be used as counters, for example. But it can’t
really tell that the square root of 25 is an integer.

EXERCISE 1.5. Explain what the stack holds as the calculation proceeds.

EXERCISE 1.6. Use Ghostscript to calculate and display
√

92 + 72.

Here is a list of nearly all the mathematical operations and functions.

x y add puts x + y on the stack
x y sub puts x − y on the stack
x y mul puts xy on the stack
x y div puts x/y on the stack
m n idiv puts the integer quotient of m divided by n on the stack
m n mod puts remainder after division of m by n on the stack
x neg puts −x on the stack
y x atan puts the polar angle of (x, y) on the stack (in degrees)


